## TOPOGRAPHIC STUDY ON THE REHABILITATION OF THE LAND SURFACE RELATED TO THE IZVOR SPORTS COMPLEX LOCATED IN BOCŞA LOCALITY, CARAŞ-SEVERIN COUNTY, ROMANIA

Ioan VOINA, PhD Eng., Voina I. Ioan, Judicial technical expert in topography, cadastre and geodesy, Bocşa, Caraş-Severin, România, nutu\_rc@yahoo.com

George Emanuel VOICU, PhD Eng. Lecturer, University "1 Decembrie 1918" Alba Iulia, The Department for Cadastre, Civil Engineering and Environmental Engineering emanuelgeorge81@yahoo.com

**Abstract**: The use of engineering topography, both in the realization of works of art and in their rehabilitation, is a particularly important element in the adoption of the best technical, economic and sustainable solutions.

In this article, we set out to present a topographic study necessary for the rehabilitation of a land area related to a sports complex located in Bocşa, Caraş-Severin County in Romania..

*Keywords:* engineering topography, 3D modeling, volume calculation, rehabilitation, contour lines

## 1. Introduction

With a tradition of almost a century, the Izvor sports complex from Bocşa locality, Caraş-Severin county, has represented in the past a beautiful story in what meant the history of Banatului de Munte and the previously mentioned locality. With a football team founded in 1925, in the former Bocşa Montană locality, we can say that the Izvor sports complex represented at that time, if we can say, a part of the pioneering sport of round ball for a series of personalities from the Romanian sports world. At that time, the sports complex is now becoming a ruin, on the back of which, once every four years, the candidates of the existing public positions at the level of Bocşa locality often carry out their electoral campaign without results in the promised senses. Figure 1 shows the presentation of the current grandstand of the Izvor - Bocşa Montană stadium.



Fig. 1 "Izvor - Bocşa Montană" stadium grandstand

Given the location about 20 km from Resita and benefiting from an altitude of about 180 m above the Black Sea level, with a rich amount of oxygen, the area was declared a climate resort by the decision of the Ministry of Labor, Health and Welfare no. 46,713 of July 25, 1931. Figure 2 shows the location of the sports complex "Izvor - Bocşa Montană".



Fig. 2 Framing the studied objective in the area

Starting from what the sports complex "Izvor - Bocşa Montană" meant and from the desire to support the local community in the sense of promoting physical activities among young people and not only, from the point of view of the specialization we have, we proceeded to achieve a topographic study on the rehabilitation of the field surface related to the old football stadium, an area affected over time by a series of floods and deformations of the land surface, which can be seen in Figure 3, a study presented in this article.



Fig. 3 Presentation of the current surface of the stadium "Izvor - Bocşa Montană"

## 2. Materials and Methods

## 2.1 Surveying instruments used

In order to perform the specialized topographic measurements necessary to perform this topographic study, we used as a measuring instrument a total station with a precision of 5 seconds, which can be seen in Figure 4.



Fig. 4 Total Station

## 2.2 Surveying methods used

The topographic measurements in the field were performed using as support points, the old altimetric and planimetric coordinates known as SI1 and SI2, points from which using the leveling method the entire surface of the stadium area was determined, as we can observe in figure 5, some of the results obtained can be seen in tables 1 and 2.



Fig. 5 Graphic extract of the method used to perform topographic measurements

| PO  | EAST       | NORTH      | ELEVATION |
|-----|------------|------------|-----------|
| SI1 | 248790.015 | 434773.757 | 184.967   |
| SI2 | 248872.896 | 434853.352 | 181.704   |

Table 1 Extract from the coordinate inventory of old points

| PO  | EAST       | NORTH      | ELEVATION |
|-----|------------|------------|-----------|
| 100 | 248870.571 | 434859.233 | 181.480   |
| 101 | 248857.443 | 434892.525 | 180.585   |
| 102 | 248844.036 | 434925.458 | 179.851   |
| 103 | 248891.643 | 434946.634 | 180.367   |
| 104 | 248944.869 | 434965.572 | 180.865   |
| 105 | 248944.658 | 434964.948 | 180.907   |
| 106 | 248958.148 | 434931.809 | 181.815   |
| 107 | 248971.280 | 434898.708 | 182.486   |
| 108 | 248920.612 | 434877.991 | 181.986   |
| 109 | 248906.389 | 434913.925 | 180.974   |
| 110 | 248900.538 | 434864.336 | 182.232   |

Table 2 Extract from the coordinate inventory of the measured points

# 2.3 Methods used in the process of automation and calculation of data obtained from measurements

In order to perform the process of automation and calculation of data obtained from measurements, the following methods were used:

a) for the calculation of the volumes, the 3D representation and the representation of the displacement vectors of the studied area, an automated software for measured data processing (Surfer) was used, in figure 6 being presented an extract from the calculation generated by this software:

| X Variable Statistics |             |                           |                                                        |
|-----------------------|-------------|---------------------------|--------------------------------------------------------|
| × Range:              | 127.244     |                           |                                                        |
| X Midrange:           | 248908      |                           |                                                        |
| -                     |             | Gridding Report           |                                                        |
| X Minimum:            | 248844      | stossing hepon            |                                                        |
| X 25%-tile:           | 248871      |                           |                                                        |
| X Median:             | 248906      | Search Pules              |                                                        |
| X 75%-tile:           | 248945      | Search Kales              |                                                        |
| X Maximum:            | 248971      | U AU 0-1                  |                                                        |
|                       |             | Use All Data:             | true                                                   |
| X Average:            | 248910      |                           |                                                        |
| X Standard Deviation: | 40.1257     | 0.11° D.1                 |                                                        |
| A vanance:            | 1610.07     | Gridding Rules            |                                                        |
|                       |             |                           |                                                        |
| V Variable Statistics |             | Gridding Method:          | <u>Delaunav Trianguation</u> with Linear Interpolation |
| I vallable Statistics |             | Anisotropy Ratio:         | 1                                                      |
|                       |             | Anisotropy Angle:         | 0                                                      |
| Y Kange:              | 106.339     |                           |                                                        |
| Y Midrange:           | 434912      |                           |                                                        |
| Y Minimum:            | 434859      | Grid Summary              |                                                        |
| Y 25%-tile:           | 434878      | Grid Summary              |                                                        |
| Y Median:             | 434914      |                           |                                                        |
| Y 75%-tile:           | 434932      | Grid File Name:           | D:\NUTU_2021\LUCRARI OCPI 2021\MAI 2021\ZVOR           |
| Y Maximum:            | 434966      | STADION/RAPORT EXCEL SURF | ER 7 XX.atd                                            |
|                       | 10.00.00    | Mini nu na X:             | 248844                                                 |
| Y Average:            | 434913      | Maximum X:                | 248971                                                 |
| Y Variance:           | 30,3436     |                           |                                                        |
| r variance.           | 1231.34     | Minimum Y:                | 434859                                                 |
|                       |             | Maximum Y:                | 434966                                                 |
| Z Variable Statistics |             |                           |                                                        |
|                       |             | Minimum Z:                | 179.867                                                |
| Z Range:              | 2 625       | Maximum 2:                | 182.463                                                |
| Z Midronov            | 101 100     | Number of Device          | 04                                                     |
| z midrange.           | 101.100     | Number of Rolymon         | 64<br>400                                              |
| 7 Minimum:            | 179 851     | Namber of Columns.        | 100                                                    |
| 7 25%-tile:           | 180.585     | Number of Filled Nodes:   | /99/                                                   |
| Z Median:             | 180.974     | Number of Blanked Nodes:  | 34.19                                                  |
| Z 75%-tile:           | 181.815     | Total Number of Nodes:    | 8400                                                   |
| Z Maximum:            | 182.486     |                           |                                                        |
|                       |             | _                         |                                                        |
| Z Average:            | 181.232     |                           |                                                        |
| Z Standard Deviation: | 0.793341    |                           |                                                        |
| Z Variance:           | 0.629391    |                           |                                                        |
| 7 Coef of Variation:  | 0.0043775   |                           |                                                        |
| 7 Coef of Skewness:   | -0.00568397 |                           |                                                        |

### Fig. 6 Extract from data processing using the Surfer program

b) in order to materialize in the field the horizontality of the land surface afferent to the lawn, the calculations specific to the square method were used, a method that based on the data obtained by executing the geometric leveling of the respective part of the land represented network of squares with a side between 10-15 m, depending on the terrain.

Below is the calculation necessary for the materialization work of the horizontalization of the studied area, where for the beginning we calculated the average share of each square using the relation described in (2.1):

$$Hi = \frac{Hi1 + Hi2 + Hi3 + Hi4}{4} (2.1)$$

$$H1 = \frac{179.851 + 180.367 + 180.974 + 180.585}{4} = 180.444m$$

$$H2 = \frac{180.367 + 180.907 + 181.815 + 180.974}{4} = 181.016m$$

$$H3 = \frac{180.974 + 181.815 + 182.486 + 181.986}{4} = 181.815m$$

$$H4 = \frac{180.585 + 180.974 + 181.986 + 181.480}{4} = 181.256m$$

where: H1, H2, H3, H4 - represent the average dimensions of each square.

Then we proceeded to calculate the average share of the land which was made using the relation described in (2.2):

where: Ho - represents the average elevation of the land.

Finally, to determine the final elevations that will be materialized in the field in order to horizontalize the land surface that we will calculate with the relation (2.3)

Cl=Ho-Hij (2.3)

- C1(100)=181.133-181.480 = -0.347m
- C2(101)=181.133-180.585 = 0.548m
- C3(102)=181.133-179.851 = 1.282m
- C4(103)=181.133-180.367 = 0.766m
- C5(105)=181.133-180.907 = 0.226m
- C6(106)=181.133-181.815 = 0.682m
- C7(107)=181.133-182.486 = 1.353m
- C8(108)=181.133-181.986 = 0.853m
- C9(109)=181.133-180.974 = 0.159m
- C10(110)=181.133-182.232 = -1.099m

values against which we will have for Ci>0 filling, and for Ci <0 excavation.

### 3. Results and Discussion

Once the data is calculated and processed using the Surfer program, we will obtain the calculation of the volume shown in Figure 7, the representation of the area in contour lines shown in Figure 8, the representation of the vector displacement shown in Figure 9 and the 3D model shown in Figure 10.

| VOLUME COMPUTATIONS                                                                                                                                                         |                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UPPER SURFACE<br>Grid File:<br>STADIONRAPORT EXCEL S<br>Grid size as read:<br>Delta X:<br>Delta Y:<br>X.Range:<br>Y.Range:<br>Z.Range:                                      | D:\NUTU_2021\LUCRARI OCPI 2021\MAI 2021\IZVOR<br>URFER 7 YX.gtd<br>100 cols by 84 rows<br>1.28529292929<br>1.28119277108<br>248844.036 to 248971.28<br>434859.26 to 248971.28<br>434859.23 to 434965.572<br>179.866909344 to 182.462516342 |
| LOWER SURFACE<br>Level Surface defined by                                                                                                                                   | Z = 181.133                                                                                                                                                                                                                                |
| VOLUMES<br>Approximated Volume by<br>Trapezoidal Rule:<br>Simpson's Rule:<br>Simpson's 3/8 Rule:<br>CUT & FILL VOLUMES<br>Positive Volume [Cut]:<br>Negative Volume [Fill]: | 550.840774122<br>546.898257396<br>552.092390333<br>2415.29053879<br>1864.44976467<br>559.04077452                                                                                                                                          |
| AREAS<br>Positive Planar Area<br>(Upper above Lower):<br>Negative Planar Area<br>(Lower above Upper):<br>Blanked Planar Area:<br>Total Planar Area:                         | 4150.5534496<br>3789.87257335<br>5590.57369305<br>13530.999716                                                                                                                                                                             |
| Positive Surface Area<br>(Upper above Lower):<br>Negative Surface Area<br>(Lower above Upper):                                                                              | 4152.53320118<br>3790.9493333                                                                                                                                                                                                              |
|                                                                                                                                                                             |                                                                                                                                                                                                                                            |

Fig. 7 Volume calculation





Fig.10 Representation of the obtained 3D model

### 4. Conclusions

Following the study we concluded that over time the measured land area has undergone some significant changes, in which case for the reduction to zero working area of the land area we consider that the working methodology adopted by us can be applied with success not only for the sports complex "Izvor - Bocşa Montană" but also for other objectives that require the horizontalization of the interested surface.

Engineering topography through the application methods that are found in the content of this discipline brings an added value in achieving or rehabilitating, depending on the case, the objectives subject to investments, in terms of technical solutions they offer, in terms of efficiency costs but also the choice of sustainable solutions for sustainable development.

As a final conclusion, we move forward with the hope that objectives such as the one studied from a topographic point of view, namely the complex "Izvor - Bocşa Montană", but also others existing in our country, be they of local, county, national interest, in UNESCO patrimony., etc., will be rehabilitated in order to restore them in the civil circuit, so that the next generations will also enjoy their benefits.

## 5. References

- 1. Borşan, T.; Dimen, L.; Voicu, G.E., Achiziția, prelucrarea și gestionarea datelor spațiale în contextul cercetărilor arheologice efectuate în cadrul stațiunii Puțul Tătarului, jud. Prahova, Pangeea, 48-56, 2015
- 2. Coşarcă C. "Topografie inginerească", Editura MatrixRom, București, România, 2003
- 3. Cristescu N. "Topografie inginerească", Editura Didactică și Pedagogică, București, România, 1978
- 4. Herban, I.S.; Vîlceanu, C.B.; Grecea C., Road-Structure monitoring with Modern geodetic technologies, Journal of surveying engineering 143 (4), 2017
- Herbei, M.; Sala, F., Modern Methods Of Implementation And Interpretation Of Digital Terrain Model, Revista "Lucrări ştiinţifice. Seria Agronomie" - Volumul 58 nr. 2 58 (2), 89-95, 2015
- 6. Ienciu, I.; Oprea, L., Prelucrarea automată a datelor analitice și grafice din topografie și cadastru, Romania, 2009
- 7. Ienciu, I.; Oprea, L., Tudoraşcu, M.M., Topografie şi cadastru, Romania, 2014
- 8. Smuleac, A.; Herbei, M.; Popescu, C., Creating the digital terrain model of the USAMVB area using modern technology, Research Journal of Agricultural Science 44 (3), 282-287, 2012
- 9. Voina, I., Bala, A. C., Brebu, F. M., "Research on the achievement digital terrain model to birtz quarry, Aghireş village, cluj County", Scientific Bulletin of the POLITEHNICA University of Timişoara, Romania TRANSACTIONS on HYDROTECHNICS ISSN 1224-6042 Volume 60 (74), Issue 2, 2015, Timişoara, Romania, pp82-86
- 10. \*\*\* The teaching staff specialization and Cadastre Land Measurements Faculty of Engineering - Politehnica University Timisoara "Complement of terrestrial measurements Vol. I-II, revised and enlarged edition "Publisher Politehnica Timisoara 2009
- 11. https://downloads.goldensoftware.com/guides/Surfer20UserGuide.pdf